Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles

نویسندگان

  • Mian Pan
  • Lan Du
  • Penghui Wang
  • Hongwei Liu
  • Zheng Bao
چکیده

In radar high-resolution range profile (HRRP)-based statistical target recognition, one of the most challenging task is the feature extraction. This article utilizes spectrogram feature of HRRP data for improving the recognition performance, of which the spectrogram is a two-dimensional feature providing the variation of frequency domain feature with time domain feature. And then, a new radar HRRP target recognition method is presented via a truncated stick-breaking hidden Markov model (TSB-HMM). Moreover, multi-task learning (MTL) is employed, from which a full posterior distribution on the numbers of states associated with the targets can be inferred and the target-dependent states information are shared among multiple target-aspect frames of each target. The framework of TSB-HMM allows efficient variational Bayesian inference, of interest for large-scale problem. Experimental results for measured data show that the spectrogram feature has significant advantages over the time domain sample in both the recognition and rejection performance, and MTL provides a better recognition performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Feature Learning Model for Sequential Radar High Resolution Range Profile Recognition

This paper proposes a new feature learning method for the recognition of radar high resolution range profile (HRRP) sequences. HRRPs from a period of continuous changing aspect angles are jointly modeled and discriminated by a single model named the discriminative infinite restricted Boltzmann machine (Dis-iRBM). Compared with the commonly used hidden Markov model (HMM)-based recognition method...

متن کامل

Identification of Ground Targets From Sequential High-Range-Resolution Radar Signatures

An approach to identifying ground targets from sequential high-range-resolution (HRR) radar signatures is presented. In particular, a hidden Markov model (HMM) is employed to characterize the sequential information contained in multi-aspect HRR target signatures. Features from each of the HRR waveforms are extracted via the RELAX algorithm. The statistical models used for the HMM states are for...

متن کامل

Identification of ground targets from sequential HRR radar signatures

An approach to identifying ground targets from sequential highrange-resolution (HRR) radar signatures is presented. A hidden Markov model (HMM) is employed to model the sequential information contained in multi-aspect target signatures. Dominant range-amplitude features are extracted via RELAX for dimension reduction. A new distance measure is incorporated into the HMM to allow a direct matchin...

متن کامل

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Automatic Target Detection Method for High-Resolution Synthetic Aperture Radar Images

Automatic target detection is of great importance in high-resolution synthetic aperture radar (SAR) images processing. In this paper, we proposed a hybrid HMMTSVM model to detect targets in SAR images. Our proposed SAR image target detection system is made up of three steps. In this first step, the testing/training SAR images are preprocessed, and image visual features are extracted through 2DP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012